Land Subsidence in Hampton Roads

Summary of USGS Report

"Land Subsidence and Relative Sea-Level Rise in the Southern Chesapeake Bay Region"

Presented to HRPDC Directors of Utilities Committee Whitney Katchmark, Principal Water Resources Engineer January 8, 2014

Measurements of relative sea-level rise at NOAA tidal stations

Site name	Period	Rate of relative sea-level rise		
		Measured (mm/yr)	95% Confid Interval (mm)	
Kiptopeke	1951–2006	3.5	±0.42	
Gloucester Point	1950–2006	3.8	±0.47	
Sewells Point	1927–2006	4.4	±0.27	
Portsmouth	1935–2006	3.8	±0.45	
Average		3.9	±0.40	

High rate of relative sea level rise in Hampton Roads

- Relative sea level rise in region is 3.9 mm/year compared to global average of 1.8 mm/year.
- Land subsidence was theorized to be the reason regional rates are roughly 2x greater than global average.
- USGS report summarizes available measurements of land subsidence.

Tidal stations measurements of sea levels do not distinguish between water that is rising and land that is sinking.

Measurements of land subsidence in Hampton Roads

What was measured	Monitoring technique	Number of stations	Period	Average Rate (mm/year)
Aquifer compaction	Extensometer	2	1979-1995	-2.6
Land subsidence	Geodetic survey	17	1940-1971	-2.8
Land subsidence	Fixed GPS	3	2006-2011	-3.1

"There are some inconsistencies between measured subsidence rates, which are expected given the variety of data, the different times of measurement, and the multiple locations measured. However, the data paint a clear overall picture of land subsidence in the region during the past 75 years.

Relative sea level rise has been 3.5 to 4.5 mm/yr. Land subsidence, measured to be 1.1 to 4.8 mm/yr, causes more than half the relative sea level rise. Aquifer compaction estimated to be 1.5 to 3.7 mm/yr can explain the majority of observed land subsidence."

Measurements of Aquifer compaction in Hampton Roads

- Equipment was installed in two locations and monitored for roughly 15 years.
- Measurements in Franklin showed 24 mm of compaction (0.9 inches)
- Measurements in Suffolk showed
 50 mm of compaction (2 inches)

Monitoring locations were chosen because they are near the largest groundwater withdrawal in region.

Why do groundwater withdrawals cause subsidence?

Total

Aquifer Compaction

LAYERED AQUIFER SYSTEM

Before Pumping

In Hampton Roads, aquifer system is a stack of sand and clay layers.

Pumping from aquifers reduces water pressure in the clay layers and allow them to compress.

Why should we identify the causes of land subsidence?

- Future rate of land subsidence may not be constant.
- Aquifer compaction will not occur at the same rate across the region.

New study of Potomac Aquifer system - http://pubs.usgs.gov/sir/2013/5116/pdf/sir2013-5116.pdf

HRPDC Recommendations

- Support DEQ's budget to incorporate land subsidence into the existing groundwater model.
- Encourage studies of sea level rise impacts and recurrent flooding to consider variable rates of land subsidence.

Saltwater Intrusion Illustrations

A IO SCORE

EXPLANATION

Confining unit

Aquifer

Ground-water flow paths— Shows general direction of ground-water flow

9

0 A